Design rules for self-assembled block copolymer patterns using tiled templates.

نویسندگان

  • Jae-Byum Chang
  • Hong Kyoon Choi
  • Adam F Hannon
  • Alfredo Alexander-Katz
  • Caroline A Ross
  • Karl K Berggren
چکیده

Directed self-assembly of block copolymers has been used for fabricating various nanoscale patterns, ranging from periodic lines to simple bends. However, assemblies of dense bends, junctions and line segments in a single pattern have not been achieved by using sparse templates, because no systematic template design methods for achieving such complex patterns existed. To direct a complex pattern by using a sparse template, the template needs to encode the key information contained in the final pattern, without being a simple copy of the pattern. Here we develop a set of topographic template tiles consisting of square lattices of posts with a restricted range of geometric features. The block copolymer patterns resulting from all tile arrangements are determined. By combining tiles in different ways, it is possible to predict a relatively simple template that will direct the formation of non-trivial block copolymer patterns, providing a new template design method for a complex block copolymer pattern.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title: Design Rules for Self-assembled Block-copolymer Patterns Using Tiled-templates

Directed self-assembly of block copolymers has been used for fabricating various nanoscale patterns, ranging from periodic lines to simple bends. However, assemblies of dense bends, junctions, and line segments in a single pattern have not been achieved by using sparse templates, because no systematic template-design methods for achieving such complex patterns existed. To direct a complex patte...

متن کامل

Rule-based Directed Self-assembly of Circuit-like Block copolymer Patterns

Templated self-assembly of block copolymers using topographic templates is attractive because it can generate dense nanoscale patterns over a large area with a periodicity down to 10 nm. In our previous work, regular patterns were achieved by using a polystyrene-bpolydimethylsiloxane (PS-b-PDMS) block copolymer and topographic templates . However, more complex block-copolymer patterns required ...

متن کامل

Rule-based Directed Self-assembly of Circuit-like Block copolymer Patterns

Templated self-assembly of block copolymers using topographic templates is attractive because it can generate dense nanoscale patterns over a large area with a periodicity down to 10 nm. In our previous work, regular patterns were achieved by using a polystyrene-bpolydimethylsiloxane (PS-b-PDMS) block copolymer and topographic templates . However, more complex block-copolymer patterns required ...

متن کامل

Rule-based Directed Self-assembly of Circuit-like Block copolymer Patterns

Templated self-assembly of block copolymers using topographic templates is attractive because it can generate dense nanoscale patterns over a large area with a periodicity down to 10 nm. In our previous work, regular patterns were achieved by using a polystyrene-bpolydimethylsiloxane (PS-b-PDMS) block copolymer and topographic templates . However, more complex block-copolymer patterns required ...

متن کامل

Rule-based Directed Self-assembly of Circuit-like Block copolymer Patterns

Templated self-assembly of block copolymers using topographic templates is attractive because it can generate dense nanoscale patterns over a large area with a periodicity down to 10 nm. In our previous work, regular patterns were achieved by using a polystyrene-bpolydimethylsiloxane (PS-b-PDMS) block copolymer and topographic templates . However, more complex block-copolymer patterns required ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014